

RESEARCH TOWARDS DESIGN OF CPS FOR SMART FACTORIES

2018-09-25

FlexLink

- 1100 employees
- Provider of high-end solutions to manufacturing industries such as: food, beverages, personal care, healthcare, automotive and electronics.
- Operating units in 30 countries

2018-09-25

New business strategy for FlexLink

FlexLink has a new business strategy. Responding to the fast changes in industry as a whole, we aim to re-invent our entire company over the next five years (from 2016 to 2020). The commitment and engagement of each and everyone at FlexLink is crucial. It is a great challenge – with great rewards at the end of the rainbow.

Industrial revolutions

Fast dynamic production line

Conventional control of production lines

- Awareness: observe state of production
- **Prediction:** use knowledge, experience
- Adjustment: set low level control parameters
- Configuration: set high level control parameters
- Optimization: maximize production rate

2018-09-25

Issues regarding conventioal control

- Fixed control set points
- High level of noise
- High energy consumption
- Low resource utilization
- High losses
- Low OEE

Cyber physical system attributes for smart factories

5C architecture for CPS: Jay Lee, Behrad Bagheri, Hung-An Kao

2018-09-25

Connection: Data collection

Smart sensors and drivers

a coesia company

Conversion: Data to information

Root cause analysis of quality deviations in manufacturing using machine learning

Manufacturing process

FLEXLINK

Image to information conversion under controlled conditions

Robust image classifier

Cyber level: Agent-based control of production line

Agent

- is persistent and goal-oriented.
- gathers information and reacts to its environment.
- runs without continuous direct supervision.
- performs complex analysis for an end-user.
- learns the environment and gets experience.
- has a character: cooperative, competitive, selfish.

Agent design

Operation knowledge

Production rules

Operator experience

Production goals

Formal Translation

Agent design diagram

Cognition: Human agent interface (HAI)

HAI: Interface to setup production goals

nstance:maziar							
Status: idle	Segment	0	1	2	3	4	
Number of segments: 4	_						
Machine capacity (1/min): [222.22221, 187.5, 187.5, 160.0, 160.0]	Target WIP		12	25	12	12	
Actual WIP: [13, 26, 13, 15]							
Max transportation time (s/m): 50, 50, 50, 50, 50	Max WIP		50	50	50	50	
Min transportation time (s/m) : 1.0, 1.0, 1.0, 1.0, 1.0							
Segments length (m): 5.80, 3.79, 2.69, 2.74	Min machine speed	20	7	7	7	7	
Conveyors length (m): 5.80, 1.35, 2.44, 2.69, 2.74	Min machine speed	20				· ·	
Number of conveyors in segments: [1, 2, 1, 1]							
New machine process time (s): 0.392, 0.395, 0.396, 0.407, 0.375	Max machine speed	100	100	100	100	100	
Product transportation time (s): [[0.055], [0.160, 0.168], [0.125], [0.130, 0.130]]							
	Min cycle time, s	0.32	0.32	0.32	0.375	0.375	
Algo cycle time (s): 0.392, 0.395, 0.396, 0.407, 0.375							
Algo machine relative speed: 0.523, 0.603, 0.593, 0.691, 0.824	Max cycle time, s	4.57	4.57	4.57	5.36	5.36	
Aigo conveyor result (m/s): [0.917], [0.313, 0.297], [0.400], [0.383, 0.383]							
Measured cvcle time (ms): 0.537.0.521.0.514.0.498.0.5	Target queue		0	0	0	0	
Filtered cycle time (ms): 0.536,0.554,0.539,0.497,0.501							
	Cale interval ma	500					
Algo messages:	Calc Interval, Ins	500					
	Conveyor speed		active				
Start Stop Reset	conveyor speed	Galculation	active .				
	Kalman filter (Q, R) 0.1			0.1			
	External algorithm	flab.alb.algo	maziar				
	_						
		Edit					

HAI: Interface for monitoring of production states

Configuration: Self-adaptive and self-configure

Questions?

2018-09-25

a coesia company